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Abstract 

Knowledge-based potentials were developed to investigate the differentiation of native structures from their decoy sets. This work 

presents the construction of two different distance-dependent potential energy functions based on two fundamental assumptions using 

mathematical modeling. Here, a model was developed using basic mathematical methods, and the carbon-alpha form is the simplest form 

of protein representation. We aimed to reduce computational volume and distinguish the native structure from the decoy structures. For 

this purpose, according to Anfinsen’s dogma, we assumed that the energy of each model structure should be more favorable than the 

corresponding native type. In the second one, we thought that the energy difference between the native and decoy structures changes 

linearly with the root-mean-square deviation of structures. These knowledge-based potentials are expressed by the B-spline basis 

functions of the pairwise distances between Cα-Cα of inter-residues. The potential function parameters in the above two approaches were 

optimized using the linear programming algorithm on a massive collection of Titan-HRD and tested on the remainder. We found that the 

potential functions produced by Anfinsen’s dogma detect native structures more accurately than those developed by the root-mean-

square deviation. Both linear programming knowledge- based potentials (LPKP) successfully detect the native structures from an 

ensemble of decoys. However, the LPKP of the first approach can correctly identify 130 native structures out of 150 tested cases with an 

average rank of 1.67. While the second approach LPKP detects 124 native structures from their decoys. We concluded that linear 

programming is promising for generating knowledge-based potential functions. All the training and testing sets used for this work are 

available online and downloaded from http://titan. princeton.edu/HRDecoys. 
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Introduction 

Proteins are important macro-molecules that are involved in all cellular processes and their functions are directly related to the 3D 

structure. The prediction of the protein structure is one of the incentive questions in computational biology. Although we know 

millions of protein sequences, less than a hundred thousand protein structures have been found until now [1]. It can be indirectly 

concluded that determining the protein structure at the atomic level is overwhelming. Reports on ab initio technique developments 

show significant progress in predicting protein structure in previous years, however, the quality of models does not have enough 

accuracy to be useful for biologists [2]. Hence, the bio-informatics approach is most widely used to predict the tertiary structure of 

proteins. 
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According to Anfinsen’s dogma, the native structure is determined by the amino acid sequence of protein which means at the 

environmental condition that folding occurs, the native structure is formed at the global minimum free energy [3]. Force fields have 

been developed to calculate the potential energy of molecular systems which refer to the functional form and parameter sets that can 

be derived from empirical and theoretical studies. The protein structure is considered atomic or coarse-grained so that potential 

functions can include pairwise interactions, side-chain orientations, secondary structural preferences, solvent exposure, and other 

geometric properties of proteins [4, 5]. The accuracy of these potential functions can be traced by evaluating the ability to detect the 

native structure from a decoy ensemble. There are two general knowledge-based and physics-based approaches to introduce 

potential functions [6-10]. Knowledge- based potentials are simple potentials extracted from the protein data bank designed to 

improve the quality of protein models whereas, in physics-based potentials, the chemical properties of the molecule are also taken 

into account. Various methods have been developed to increase the accuracy of these potential functions in recent years [11-14]. 

Nowadays, many methods like Rosetta, Alpha-fold, and Michael Feig’s refinement work are routinely getting high-accuracy 

structures. In addition, Baker and Feig’s refinement methods are able to generate ensembles for near-native structures and score the 

best structures in those ensembles to produce improved structures [15-23]. In most cases, knowledge-based potentials are used to 

sort decoy structures by calculating similarity to the native structure. The inability of the proposed model to identify the native 

structure as the lowest potential energy is regarded as the error rate of the potential functions. There are two methods to generate 

knowledge-based potentials. The first method is to use the Boltzmann inversion equation to convert the distribution of geometric 

properties of known structures to potential energy functions. This method is also called the statistical potential obtained from the 

ratio of observed frequencies to the reference state. Therefore, several models have been developed for representing reference states 

such as Sippl’s assumption, distance-scaled finite ideal-gas reference state (DFIRE), and discrete optimized protein energy (DOPE). 

In the second method, the potentials are extracted from a training process to quantitatively differentiate between the incorrectly 

folded models and native structures [1]. 

Using physical potential functions and considering more than 40 physical constraints in a linear programming problem, Rajgaria 

et.al [24] have achieved better results than previous studies on the Titan-HRD protein data set. Despite the desirable results, it is 

inevitable to consider several constraints in the optimization problem using the physical potential functions. In some studies, the 

least-square problem has been used to optimize knowledge-based potentials. Since the least-square problem is based on norm-2, the 

energy difference between the native structure and the decoy can give both positive and negative values. Therefore, the use of this 

method in protein modeling makes Anfinsen’s dogma not applicable to the potential production process. In these studies, choosing 

the best decoy instead of recognizing the native structure is the main parameter for model evaluation. The best decoy is determined 

by calculating the minimum distance and the lowest energy difference with the native structure. In addition to the inability to 

distinguish the native structure from the decoy, there is also a high computational cost for using the least-squares method [1, 25]. 

We considered the pairwise distances between the Cα of amino acids so that the knowledge-based potentials are formulated using 

B-spline basis functions. We introduce two different optimization processes to obtain potential parameters. Both are based on 

Anfinson’s dogma that in the first method only the energy difference of the native and decoy structure is included in the modeling 

while in the latter method, it is assumed that the energy difference is linearly proportional to the distance of structures. We solved 

them by using MATLAB software and checked the results of the two methods. Finally, our results were cross-checked with 

previously reported data. Our LPKPs have better detection for native structures compared to other methods. Both LPKPs are able to 

identify 130 and 124 native structures out of 150 tested cases, respectively. 

http://www.tsijournals.com/
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Materials and Methods 

In this model, the amino acids are represented by the location of Cα atoms. Hence a protein with m amino acids is expressed by a 

vector, C = (c1, c2, ..., cm) where ck is the location of Cα of the k-th amino acid having the following three-dimensional coordinates: 

ck = (xk, yk, zk).       (1) 

We denote the native structure of each protein with N = (n1, n2, ..., nm) and decoy structures with Di = (d1, d2, ..., dm), where i is the 

decoy number. 

1. Geometric Distance Between Two Protein Structures

The Euclidean distance between two points is the basis for calculating the geometric distance between two protein structures. Root-

mean-square deviation (RMSD) method was used for this purpose so that the first protein structure is considered to be the reference 

and the second structure is best fitted to the first one using a transformation operator G: 

where nk and dk are the k-th location of the Cα atoms in native reference structure and decoy structures, respectively, and m is the 

number of amino acids. The transformation G involves a set of translation and rotation operations to obtain the best structural 

alignment between two protein structures and it does not change the shape or size of the proteins [26-28]. RMSD as defined above 

is a norm-2 metric distance [29]. The norm-2 (also written ”L2-norm”) x  is a vector norm defined for a vector xT = [x1, x2, . . . xn] by 

where |xk| denotes the absolute value of xk [30]. 

2. Knowledge-based Potential Function

According to Anfinsen’s dogma, potential energy functions must be obtained in such a way that the energy of the protein’s nat ive 

structure has the lowest value in a set of decoy structures [3]. This hypothesis is shown in the following constraint: 

(4) 

in this equation, EN is the energy vector of a native structure and EDi is the energy vector of the i-th decoy structure of the relevant 

protein [24]. If we have p proteins and each protein has i decoys, then constraint 4 is reformulated as below: 

                (5)

where X is a vector of parameters that indicates the number of interactions between different types of amino acids at different 

distances of Cα-Cα in the protein structure. Given that the number of natural amino acids is 20, the total number of types of 

http://www.tsijournals.com/
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interactions is equal to 210. Also, each type of interaction is expressed with eight parameters representing potential energy at 

different intervals. Therefore, the total number of parameters needed to calculate the potential energy between different types of 

amino acids at different distances is equal to 210 × 8 = 1680. In equation 5, ε is an arbitrary number in which different values have 

been tested and the best of them has been 0.01. In the p-th protein, Ep,i is the energy matrix of the i-th decoy, and Ep,n is the energy 

matrix of the native. Now equation 5 can be rewritten as follow, where parameters Sp are positive frail variables: 

(6) 

In the first approach, the knowledge-based potential functions were optimized through the criteria formulated in equation 6. Also, 

assuming that the energy difference between the native and the decoy structure can be related to the geometric distance between 

them, a similar condition can be extended to optimize the potential functions [1, 25, 31]. This constraint is shown below: 

(7) 

where, DisDi,N is the distance between decoy Di and native N . The equation 7 is rewritten in the following: 

(8) 

In this equation, α is constant that is considered as 1 in [31], so the constraint 8 is rewritten for p proteins as below, where Dp,i,n is 

the distance between the native structure and i-th decoy structure of p-th protein.     

        (9) 

The extended uniform cubic B-spline possesses the convex hull property, symmetry, and geometric invariability [32]. These 

features are convincing to use this function as the basis for the potential functions. We used this function at eight uniform intervals 

for each of the 210 types of interactions between amino acids shown in Table 1. So, the energy of all decoy and native structures is 

calculated using the equation below [1, 31]: 

  (10) 

In this equation, aa(i) ∈ {1, ..., 20} is the amino acid type of the i-th Cα and Bp(ri,j) is the p-th B-spline basis function evaluated on 

the distance between the i-th and j-th Cα, shown in Figure 1. Also, Xaa(i),aa(j) are the model parameters determined by the 

optimization according to the following. 

Table 1. The bin width distances for eight B-spline basis functions. 

ID Cα Distance ( Å )

1 2.2 - 4.6 

2 2.8 - 5.2 

3 3.4 - 5.8 

4 4.0 - 6.4 

5 4.6 - 7.0 

6 5.2 - 7.6 

7 5.8 - 8.2 
8 6.4 - 8.8 

http://www.tsijournals.com/
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Figure 1. The eight cubic B-spline basis functions B1,..., B8 used in the knowledge-based potentials. 

3. Optimization Problems

We designed the energy function using an optimization procedure, assuming that for every native structure Nn,p, we have a set of 

decoy structures Di,p. At each stage, (Ei,p − En,p) is the energy difference, and Di,n,p is the corresponding distance between the native 

structure and j-th decoy in the p-th protein. Also, the sum of the frail variables constraint Eq.5 was minimized in each scheme. 

Since the frail variables are positive, the condition Sp ≥ 0 was added to each optimization problem. For vector X, we consider the 

subscription of general constraints [24] for the condition −4 ≤ X ≤ 4. 

3.1. First optimization scheme 

The first optimization problem can be written into linear programming which used Anfinsen’s dogma as below, which was named 

with LPKP1: 

(11) 

(12) 

(13) 

(14) 

(15) 

where the vector X is a set of parameters of the energy functions, and p is the number of proteins in the training set. 

3.2. Second optimization scheme 

The second optimization problem (called LPKP2) can be written into linear programming using Eq.11 and the relationship between 

the distance and energy difference of the two structures is as follows: 

http://www.tsijournals.com/
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

This scheme is similar to the first scheme in terms of protein number, optimization method, and the number of parameters X except 

for the constraint 8. 

4. Training and Test Sets

The high-resolution decoy set contained 1400 protein structures, with 500-1600 decoys for each protein [24], but we deleted 

proteins in which decoys and native structures do not have the same number of amino acids. Finally, the 1370 proteins remained 

from the Titan-HRD. The entire set of protein decoy structures has been made available at http://titan.princeton.edu/HRDecoys/. 

From 1370 proteins used for decoy generation, 1220 proteins were randomly selected for training processes. Since each protein has 

at least 500 decoy structures, therefore, all decoys of each protein were sorted based on their Cα RMSD, and then 500 decoys were 

randomly selected to cover the whole RMSD range. This arrangement of a training set has 500× 1220 = 610000 decoy structures. 

Because of computational limitations, it is not possible to include all 610000 decoys in the training step. Therefore, we reduced 500 

to 45 decoys per protein to set up the training procedure with 60000 decoy structures. The remaining 150 proteins of the Titan-HRD 

set were used for testing the obtained potential functions. In this step, also 500 decoys were selected using the same technique 

explained above in generating the training set. A summary of the test and training data sets is given in Table 2. 

Table 2. Properties of the different protein decoy sets used in this study. 

Decoy set Nprot a Nres b Ndecoys c RMSD 

Titan-HRD 1220 111.80 500 2.46 

Titan-HRD∗ 150 103.95 500 2.51 

Training set (Titan-HRD) and test set (Titan-HRD∗) from the Titan high resolution decoy set at http://titan.princeton.edu/HRDecoys/. RMSD is 

the distance measured between the decoys and the corre- sponding native structures averaged over all decoys and all proteins. 

a Number of proteins in each set. 

b The average number of residues in each set. 

c The average number of decoys in each set. 

Results and Discussion 

The existence of effective factors has led to the use of various methods for the production of knowledge-based potential functions. 

In this study, we have modeled these functions taking into account a limited number of these parameters. The knowledge-based 

potential functions are designed according to eight uniform cubic B-spline functions and the distances between Cα atoms in protein 

http://www.tsijournals.com/
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structures. These potential functions were extracted from the information of 60000 decoy structures. Two sets of energy parameters 

were constructed based on two different optimization schemes of LPKP1 and LPKP2. The main constraint in the LPKP1 model is 

Anfinsen’s dogma [3]. Hence, the energy difference between the decoy and the native structure must always be greater than a 

positive constant value called ε, which is shown in constraint 6. In the LPKP2 model, the effect of RMSD is examined on our 

scheme by adding constraint 9. The objective function of each scheme has minimized the sum of the frail variables, discussed in the 

methods section. The zero value for an objective function means that there are no infringements. In this study, the objective 

function has obtained a value close to zero, which represents the very low error of our introduced optimization model. Previously, 

the optimization schemes 8 and 16 were described, and the method was generally explained in Algorithm 1. 

At first, the value of ε considered 0.01 in schemes 8 and 16. The optimization schemes were implemented with ε and approximately 

60000 structures. Since the ability to identify between the native and native-like 

Algorithm 1 Execution of knowledge-based potential function 

Input: M, Ndecoys. 

d M : Number of Proteins. 

d Ndecoys : Number of Decoys in a Similar Protein. 

Output: Ei,j, Di,n,p. 

d Ei,j : Energy difference between two structures. 

d Di,n,p : RMSD distance between two structures. 

d θ1 : The model parameters determined by the optimization 8. 

d θ2 : The model parameters determined by the optimization 16. 

1: for i = 1 to M do 

2:   Read Cα three-dimensional coordinates for native structure. 

3:   Solve Disi,1 for each pair of Cα in native structure. 

4:   Solve problem ENativei 10 for native structure. 

5:  for j = 1 to Ndecoys do 

6:   Read Cα three-dimensional coordinates for decoy structure. 

7:   Solve Disi,j+1 for each pair of Cα in decoy structure. 

8:   Solve problem EDecoyi,j 10 for decoy structure. 

9:  Set Ei,j = EDecoyi,j 
− ENativei 

. 

10:   Solve RMSD problem Di,n,p 11. 

11: Solve problem 8 for θ1. 

12: Solve problem 16 for θ2. 

structures is a considerable standard for any potential function, the optimization results have been tested to detect native structures. 

The LPKP examined 500 decoys for each of the 150 test proteins of the Titan- HRD decoy set. In this examination, the comparative 

rank of the native among decoy structures has been calculated. An ideal potential function should be able to detect rank 1 for the 

native structures of all the proteins in the test set. As we know, it is an accepted condition that the test set should not share with the 

training set since it invalidates the potential energy appeasement. Hence, our test set was carefully selected so that the training and 

test sets had no overlap. The examination results are presented in Table 3. According to that, 130 native structures were correctly 

http://www.tsijournals.com/
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recognized among 150 proteins with an average rank of 1.67 in method 8. Moreover, native structures were distinguished in 124 

proteins of scheme 16 with an average rank of 2.83. The results represent that our proposed method is significantly more accurate 

than previous methods [24, 33, 34, 35]. 

Table 3. Rankings of the native structures using the LPKP1 and LPKP2 on Titan-HRD test set. 

ID LPKP1 LPKP2 ID LPKP1 LPKP2 ID LPKP1 LPKP2 ID LPKP1 LPKP2 

1em9A 1 1 1fb1A 1 1 1chd- 1 1 1faq- 1 1 

1iioA 1 1 1hf9A 1 2 2drpA 1 1 1b0yA 1 1 

1qqvA 1 1 1b1bA 1 1 1ci5A 1 1 1tmy- 1 2 

1b9lA 1 1 1bik- 1 1 1k3bB 1 1 1gd5A 1 1 

1ap0- 1 1 1hgvA 39 35 1fxkC 1 1 1hd0A 1 1 

1ghc- 1 1 1tyfA 1 1 2ech- 1 1 1aplD 1 1 

1u2fA 1 1 1ag4- 1 1 1af8- 1 1 3monB 1 4 

1eptB 2 1 1fe6A 1 1 1cjgA 1 12 1quqB 1 2 

1aq3A 1 4 1b2iA 2 1 1g10A 4 1 1eqiA 1 1 

1c3kA 1 1 1cm0B 1 1 1n72A 1 1 1cl3A 1 1 

1l0oC 1 2 1dpuA 1 1 1k5yR 1 23 1imt- 1 1 

1etpA 1 1 1b2pA 1 1 1eal- 1 1 1rof- 1 1 

1jq4A 1 1 1ahjA 1 1 1jpyA 1 1 1cmaA 1 6 

1a10I 1 1 1hjrA 1 1 1qc7A 1 1 1d7bA 1 1 

1lcl- 1 1 1hks- 1 1 1bccH 1 3 1a14H 1 1 

1hlb- 1 1 1ec5A 1 1 1ndoB 1 1 1qckA 1 1 

1gnf- 1 1 1c6vX 1 1 1k99A 9 1 1irqA 3 2 

1lghB 1 39 1c7uA 3 1 1i7kA 1 1 1scjB 1 1 

1hnr- 1 1 1ecsA 3 5 1b44D 1 1 1ai9A 1 1 

1bpr- 1 1 1dujA 1 1 1g31A 1 1 1auz- 1 1 

1dax- 3 1 1aalA 1 1 1i8nA 1 21 1exg- 2 1 

1b4rA 1 1 1aiw- 1 1 1hp8- 1 1 1qgeE 1 1 

1a2b- 1 1 1xbd- 7 1 1kbhA 1 1 1dc7A 1 1 

1a2kA 1 4 1ab1- 1 1 1cqkA 1 1 1j5eP 1 1 

1o7bT 1 1 1be9A 1 1 1b4uA 1 1 1bdyA 1 1 

1j7dB 1 1 1occE 1 1 1cqqA 1 1 1ly7A 1 1 

1jacA 1 1 1hs7A 1 3 1ibxB 1 1 1jajA 1 1 

1occJ 1 2 1qj8A 1 1 1occH 1 6 2sob- 1 1 

1tafB 1 1 1b6q- 1 1 1akjD 2 1 1a4aA 1 1 

1ha8A 1 1 1olgA 21 42 1icfA 1 1 1a4yB 1 1 

1yuf- 6 13 1qjzA 1 1 1jy2N 2 36 1csbA 2 1 

1dhn- 1 1 1cdzA 1 12 1qkfA 1 1 1hbiA 1 1 

1f7lA 1 1 1pcfA 1 1 1g84A 2 1 1jh3A 1 1 

1cfaA 1 1 1kilE 1 1 1fpzA 1 1 1ehxA 1 1 

1b01A 3 13 1hykA 2 1 1am9A 1 1 1a6l- 1 1 

1dk7A 1 1 1hyp- 1 4 1amx- 1 1 1jhcA 1 1 

1perL 1 4 1qmtA 1 1 1cg5B 1 1 3lriA 4 1 

1fw9A 17 1 1gd7A 1 1 

Other force fields such as HR [24], LKF [33], TE13 [34], and HL [35] have been tested on this set of high-resolution decoys. All 
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these force fields were fundamentally different from each other in their methods of energy estimation. The HR force field is a novel 

Cα-Cα distance-dependent potential where the interaction distance range 3-9 Å  is divided into eight bins. Also, this method has the 

nearest results to our model with a detection limit of 113 native structures. The LKF force field is a Cα-Cα distance-dependent 

potential where the interaction distance range 3-9 Å  is divided into eight bins. However, the LKF was not successful in the 

detection of native structures. Moreover, the TE13 force field is also a distance-dependent (13 bin) force field, but the interaction 

distance is measured between the geometric centers of the side chain of two interacting residues. The HL force field is contact-

based, such that two conditions are needed to consider a pairwise amino acid contact. First, they have to be at least five residues 

apart from each other, and second, the distance between their non-hydrogen atoms must be less than 4.5 angstroms. The comparison 

of the energy rankings obtained using different force fields is presented in Table 4. As one can see in table 4, according to the ranks, 

LPKPs are the best in identifying the native structures. Assigning rank 1 to the native structure means that the force field is expert 

at finding the native structure from an array of its nonnative, called decoy structures, configurations. therefore, the LPKPs could 

increase the percentage of native fold recognition from 75.33 to 86.67. 

Table 4. Testing force fields on 150 proteins of the Titan-HRD decoy set. 

Method Name Ave Rank No of Firsts Ave RMSD 

LPKP1 1.67 130 (86.67%) 2.291 

LPKP2 2.83 124 (82.67%) 2.291 

HRa 1.87 113 (75.33%) 0.451 

LKFb 39.45 17 (11.33%) 1.721 

TE13c 19.94 92 (62.16%) 0.813 

HLd 44.93 70 (46.67%) 1.092 

LPKP1 and LPKP2 are the results of schemes (??) and (??), respectively. 

a is extracted from [24]. 
b is extracted from [33]. 
c is extracted from [34] and TE13 force field was only tested on 148 cases. 
d is extracted from [35]. 

The results of optimization 8 and 16 were tested to calculate the correlation coefficient of each of the proteins in the test Titan-HRD 

set. We used the below formulation for computing the correlation coefficient: 

 (22) 

The Corr(d, E) defined between values of energy E(Xi) and distance Sd(Xi) for all of the Xi decoy structures. Furthermore, ⟨.⟩ and 

σ(.) were determined by the mean and standard deviation. The reason for defining the correlation coefficient Corr(d, E) is that it can 

measure the quality of energy function E concerning the distance Sd. Initially, by examining the correlation of each protein, we 

found that scheme 8 had better than 16 in the correlation coefficient LPKP and RMSD. For the presentation of these results, two 

proteins were randomly chosen in Figure 2 and compared for two optimization methods. The correlation had been approximately 

0.7 for the first method and this value reduced to 0.6 in the second. 

http://www.tsijournals.com/
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Figure 2. Energy-RMSD plot for two test cases with two methods LPKP1 and LPKP2. 

Considering the correlation graph of all proteins in Figure 3, we found that scheme 8 had a mean correlation of 0.7. Hence, the 

scheme 8 had more than 80 proteins with a correlation of 0.6. These results indicate a high correlation in LPKP. Furthermore, by 

comparing the two graphs in Figure 3, we found that scheme 8 has a higher correlation amount. Also, method 16 had a mean 

correlation of 0.6 and had more than 70 proteins with a correlation of 0.6. Originally, the number of decoys and the value of epsilon 

were considered constant in our training set. Since the LPKP1 brought on better results, in the following, the conditions are 

discussed for this modeling method. Hence, we considered five different values for the number of training set decoys. In this 

experiment, we included the values of 15, 25, and 35 instead of 45 for the number of decoys in each protein. The results of 

identifying native structures for each of these values are summarized in Table 5. We observed that as the number of decoys 

increased to 35, our model accuracy increased dramatically. However, this had no significant effect on the rate of detection of the 

native structure. Furthermore, according to Figure 4, in each protein, the graph of different values for the number of training set 

decoys is very similar to the logarithmic function. Considering this diagram, if the number of decoys selected for the training set is 

more than a certain amount, there is no significant change in the results and only increases the computational volume of the 

modeling. Therefore, we selected 45 decoy structures per protein for use in the process of developing knowledge-based potentials. 

In the last step, different values for ε have been considered in the optimization schemes. We realized the slight changes in the 

amount of ε do not create a significant impact on our modeling by examining these values. 

Figure 3. Distribution of correlation coefficient between energy and RMSD for all 150 test cases. 

http://www.tsijournals.com/


IJBRHS | October 2025 

11 

Figure 4. The effect of decoys number in the training set on native structure detection and logarithmic function. 

Table 5. The effect of the number of decoys in training set on native structure detection. 

Number of Decoys No of Firsts 

15 52 

25 110 

35 128 

45 130 

50 130 

Number of decoys for each protein in the training set. 

No of firsts is the number of native struc- tures detected in all the test set proteins. 

Although our priority was detecting the native structure among decoys as the first structure, and our proposed scheme was able to 

present adequate detection regardless of the elimination of many involved parameters and mathematical modeling, for comparison 

of the LPKPs with more recent methods, the best decoy introduced in [1] is used, which is demonstrated in Table 6. 

Table 6. Assessing the best decoys selected by energy functions on Titan-HRD dataset. 

Best PPDa PPEa LPKP1 LPKP2 

Titan-HRD 1.11 1.70 1.60 1.62 1.81 

Average value over the test set. 

LPKP1 and LPKP2 are the results of schemes 8 and 16, respectively. 

a is extracted from [1]. 

Conclusion 

Knowledge-based potentials are developed to derive native structures from their decoy sets. On the other hand, mathematical 

formulations are designed to increase the accuracy and efficiency of the modeling. In the current study, we have introduced and 

developed a method based on elementary mathematical methods to display the simplest form of proteins. The benefits of these 

methods are easy to implement with high performance and at the same time, with no need for more CPU time compared to popular 
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methods. We constructed two different sets of distance-dependent potential energy functions based on two basic assumptions. At 

first, we assumed that the energy of each decoy should be more positive than the corresponding native type. The next step assumes 

that the energy difference and the distance between the two structures are linearly dependent. The RMSD was used to calculate the 

distance between the decoys and native structures. Each of the potential energy functions has terms of pairwise distances between 

Cα-Cα and is expressed using the B-spline basis function. We optimized the parameters of the potential function by using two linear 

programming problems on a large collection of Titan-HRD decoy sets. Furthermore, the obtained results were tested on the 

remainder of Titan-HRD. We found that the potential functions developed based on Anfinsens dogma have more accurate detection 

than those developed by the root-mean-square deviation of structures. However, both linear programming knowledge-based 

potentials (LPKP) were successful in recognizing the native structures from an ensemble of high-resolution decoys. In this stage, 

the high detection was targeted and the LPKP in the first scheme was able to correctly identify 130 native structures out of 150 test 

cases with an average rank of 1.67. The second LPKP scheme was able to detect 124 native structures with an average rank of 2.83. 

Although there are methods with very strong predictions in this field, our result indicates that linear programming is a promising 

method for generating knowledge-based potential functions. All the structures including training and testing Titan-HRD used for 

this work are available online and can be downloaded from http://titan.princeton.edu/HRDecoys. Although many influential factors 

are involved in the production of knowledge-based potentials. Hence in this study, the modeling of these functions with a 

mathematical approach is discussed. Given that the purpose of modeling is to reduce the parameters involved in the problem as 

much as possible. Further, our issue was that despite the reduction in computational volume, the designed method was able to score 

the best structures in those ensembles to produce improved structures. Furthermore, we will attempt to upgrade our approach to an 

all-atom model in the future. 
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